Effects of Combustible Dust Clouds on the Extinction Behavior of Strained, Laminar Premixed Flames in Normal Gravity

نویسندگان

  • M. GURHAN ANDAC
  • FOKION N. EGOLFOPOULOS
چکیده

An experimental and numerical study was performed on the interaction of combustible solid particles with atmospheric, strained, laminar premixed methane/air and propane/air flames in normal gravity. The study was conducted in the opposed-jet configuration in which a single flame was stabilized below the gas stagnation plane by counterflowing a mixture against an air jet. Into the flame were seeded spherical 50 lm, combustible glassy-carbon particles. Flame extinction data were analyzed to provide insight into the effects of fuel type, gas-phase composition and temperature, flame thickness, strain rate, and particle number density. It was found that at low strain rates, the particles could effectively burn within the gaseous flame zone and thus enhance the overall reactivity of the system and resistance to extinction. At high strain rates, however, the particles are rapidly transported through the flame and their ignition is delayed until they are well downstream of the flame and so have no effect or at best a minor one on the gaseous flame. If no ignition occurs, the combustible particles act simply as heat sinks, promoting extinction. The effects of Lewis number and flame thickness were also studied. It was found that the enhancement of the gas-phase reactivity by the particles is more profound for Le 1 and for thick flames. Finally, at the same flame temperature, fuel-lean flames were determined to be more resistant to extinction compared to fuel-rich flames in the presence of combustible particles. This was attributed to the higher concentrations of O2, O, and OH species, which are largely responsible for the consumption of carbon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of fuel and air stream diluted methane–air partially premixed flames in normal and microgravity

The effects of fuel and air stream dilution (ASD) with carbon dioxide on the suppression of normal and microgravity laminar methane–air partially premixed coflow jet flames were experimentally and numerically investigated. Experiments were conducted both in our normal-gravity laboratory and at the NASA Glenn Research Center 2.2 s drop tower. Measurements included flame topology and liftoff heig...

متن کامل

Dynamics and Structure of Dusty Reacting Flows: Inert Particles in Strained, Laminar, Premixed Flames

A detailed numerical study was conducted on the dynamics and thermal response of inert, spherical particles in strained, laminar, premixed hydrogen/air flames. The modeling included the solution of the steady conservation equations for both the gas and particle phases along and around the stagnation streamline of an opposed-jet configuration, and the use of detailed descriptions of chemical kin...

متن کامل

Effect of the temperature difference between gas and organic dust on propagating spherical flames

A new analytical study performed to investigate the effect of the temperature difference between gas and particle in propagation of the spherical flames. The combustible system is containing uniformly distributed volatile fuel particles in an oxidizing gas (Air) mixture. The model includes evaporation of volatile matter of dust particles to known gaseous fuel (methane) and the single-stage reac...

متن کامل

A comparative numerical study of premixed and non-premixed ethylene flames

Detailed numerical simulations of premixed and non-premixed C2H4/air flames were conducted, using six available kinetic mechanisms. The results help assess differences between these mechanisms and are of interest to proposed hydrocarbon-fueled SCRAMJET concepts, in which C2H4 can be expected to be a major component of the thermally cracked fuel. For premixed flames, laminar flame speeds were ca...

متن کامل

Buoyant Unstable Behavior of Initially Spherical Lean Hydrogen-Air Premixed Flames

Buoyant unstable behavior in initially spherical lean hydrogen-air premixed flames within a center-ignited combustion vessel have been studied experimentally under a wide range of pressures (including reduced, normal, and elevated pressures). The experimental observations show that the flame front of lean hydrogen-air premixed flames will not give rise to the phenomenon of cellular instability ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003